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We present results from a numerical study of the growth of domains in two dimensions, following a
low-temperature quench, in a time-dependent Ginzburg-Landau model in the presence of a quenched
random field. The order parameter is conserved during the temporal evolution of the system. We find
that, at late times, the domains grow logarithmically in time, consistent with studies done for a noncon-
served order parameter. We present clear evidence for a breakdown of dynamical scaling of the struc-
ture factor. We also demonstrate a crossover behavior exhibited by the tail of the structure factor—the
standard Porod-like behavior changes over to a “polymerlike” behavior as the strength of the random-

ness is increased.

PACS number(s): 64.60.Cn, 47.55.Mh, 64.60.My, 68.45.Gd

Binary fluid mixtures in random porous media can be
regarded as physical realizations [1,2] of random-field Is-
ing models (RFIM’s) whose dynamics is constrained by
the conservation of the order parameter. Although this
random-field description has been criticized as being
inapplicable [3-6] in the case of low-porosity media (such
as Vycor glasses), and an alternative ‘single-pore”
description [3] has been presented, this single-pore
description, however, cannot be used for phase separation
in various gels that resemble a dilute network of strands.
It is possible that phase separation in these low-density
porous media may exhibit random-field behavior [4].

Quenched random fields pin domain walls and thus im-
pede the growth of ordered domains following a sudden
temperature quench. This “pinning” changes the asymp-
totic growth law from an algebraic to a logarithmic func-
tion of time. This has been established by a variety of
analytical [7-10], numerical [11-14], and experimental
[15] studies in the case when the order parameter is not
conserved in the dynamics. In this Rapid Communica-
tion we investigate the effect of order-parameter conser-
vation on the asymptotic dynamics of domains pinned by
quenched random fields. One of our specific questions is,
does the conservation law act as a relevant constraint,
further slowing down the logarithmic growth?

General arguments of the kind put forward by Lai,
Mazenko, and Valls (LMV) [16] suggest that for
quenched random systems, the conservation law does not
alter the asymptotic logarithmic growth. LMYV suggest
that at late times the domain size R (t) grows as

dR _ a(R,T)

1
dt R m

for the curvature-driven nonconserved case, while for spi-
nodal decomposition

dR _ a(R,T)

4R _a(R,T) 2
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where a (R, T) is related to free-energy barriers required
to coarsen a domain of size R at a temperature 7. For
class-3 systems (in the classification scheme of LMYV),
which includes the RFIM, a(R,T)=age IOR/T, where
fo is a free-energy barrier per unit length. Thus the
long-time dynamics of domain growth is dominated by
“hopping over barriers” arising from interfacial pinning
due to the random field. Introducing this form of a (R, T)
in the above expressions and integrating, one finds that at
late times both the conserved and the nonconserved cases
show an asymptotic logarithmic growth R (¢)~Int.

In this paper we carry out a numerical analysis of the
conserved dynamics of a “soft-spin” version of the
RFIM, to study the asymptotic and the preasymptotic
growth of the ordered domains. Computational limita-
tions force us to restrict our investigation to two dimen-
sions. This restriction, however, produces an unexpected
surprise. We find that the nature of the ‘“‘shape” of the
growing domains changes as the strength of the random
field increases. This is reflected in a crossover behavior
exhibited by the structure factor for large wave vectors.
This surprising crossover is specific to two dimensions.
We note that in two dimensions the RFIM does not pos-
sess long-range order even at zero temperature. Thus
complete phase separation does not proceed following a
low-temperature quench—the domains grow up to a
finite size R ., which increases with decreasing tempera-
ture or strength of the random field. This, we shall see,
manifests into a breakdown of dynamical scaling
behavior of the structure factor at late times.

Consider a conserved order parameter ¥(x,7), which
evolves according to the time-dependent Ginzburg-
Landau (TDGL) model [17] (also called the model-B or
the Cahn-Hilliard model in the context of spinodal
decomposition),

oY(x,7) =TV? SF
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where I is a constant mobility and 7(x,7) is a Gaussian
distributed (conserved) random noise term of mean zero
and variance proportional to the temperature 7. The
coarse-grained free-energy functional F of the “soft-spin”
version of the RFIM is given by

Flgx,n]=1 [di (K (VYP—bv?+ Sy —2H (x|,

4)

where b, u, and K are phenomenological positive
parameters and the quenched random field H (x) has a
Gaussian distribution with mean zero and variance
(H(x)H(x'))=H?8(x—x'). We rescale variables so as
to express the dynamical equations in a simple form. In
terms of a time ¢t =27T'b%/K, a position r=(b/K)!*x
and an order parameter ¢=(u/b)""%, the evolution
equation simplifies to

do(r,t)

5 =1V Vi 0= ¢(r,0+ 65,0 —h (r)]

+Vet(r,1) , (5)

where £(r,t) is the new noise term and the rescaled
quenched random field 4 (r) is given by

(h(r)h(r))=h?(r—T1"), (6)

with h2=uH?/(b?K). The quantity €, proportional to
the temperature (=uky T /Kb) and h are the only param-
eters in the model.

We have integrated the dynamical equation (5) using
an Euler scheme with spatial mesh size Ar =1 and time
step Az =0.025, which allows us to iterate Eq. (5) up to
times ¢ <t,,,, = 10000 for a system of size 1282, We have
checked that for smaller time steps the domain size does
not change appreciably. For each value of 4 and €, we
perform 20 runs to average over different realizations of
the (i) initial configurations of the order parameter, (ii)
quenched random field A (r), and (iii) thermal noise
&(r,t). We compute the circularly averaged pair correla-
tion function g (7,?), and its Fourier transform, the struc-
ture factor S(k,?). The size of the domain R,(¢) is com-
puted from the first zero of g (#,¢). We find that for times
up to ?,,y, R, (1) is sufficiently smaller than the linear size
of the system and no finite-size effects are visible.

In order to study the asymptotic temporal behavior of
the domain size, we plot R,(?) vs Int in Fig. 1, for various
values of the random field 4 and for a quench to €=0.3,
which corresponds to e€/€,(h=0)=0.4 [18]. For this
value of €, the A =0 curve reproduces the behavior of the
pure system [17,19-21] R ~t¢, where @ =0.30%0.02. Al-
though we find a clear logarithmic behavior for A =2, for
smaller 4 values there is a large preasymptotic region
where the domain size grows as R (¢)~ (Inz)? (Fig. 2). At
later times, the growth crosses over to R ~Int behavior.
This picture is consistent with the analytical [7-9] and
numerical [12-14] studies of the two-dimensional RFIM
in the absence of the conservation law. Our results thus
indicate that the conservation law does not alter domain
growth laws in two-dimensional random-field models.
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FIG. 1. R,(?) vs Int for several random-field strengths. For
h =2, the Int behavior is clear, whereas for smaller field
strengths a preasymptotic (Int)? behavior is found, as shown in
Fig. 2. The straight lines are best fits to the data.

This is an important result since the conservation law
changes the universality class for pure systems.

We point out that the domain size R (¢) does not grow
indefinitely with time and is expected to saturate to a
value [8] R (h)~exp[K (o /h)*/3], where o is the sur-
face tension and K is a constant. This is because d =2 is
the lower critical dimension of the RFIM. In domain-
growth problems governed by a stable zero-temperature
“discontinuity” fixed point [19], R plays the role of the
“divergent correlation length.” Only in the vicinity of
this fixed point does one observe dynamical scaling. In
the present problem, there is no stable zero-temperature
“discontinuity” fixed point and no concomitant divergent
length scale. Thus the system never enters the true scal-
ing regime. We therefore expect a violation [11,14] of the
dynamical scaling of the structure factor S(k,¢). Figure
3 explicitly demonstrates this breakdown of dynamical
scaling of the circularly averaged structure factor for
h =1. The deviation from scaling is expected to be most
prominent in the region kR () <<1, i.e., at length scales
larger than the domain size. This is seen quite clearly in
Fig. 3.

Further analysis of the asymptotic form of S(k,¢) for
large k leads to an interesting crossover phenomenon
reflecting a change in the morphology of the growing
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FIG. 2. R,(2) vs (In?)* for several random-field strengths.
This preasymptotic growth law is seen clearly over a long
period of time for smaller values of field strengths (A =0.5 and
h =1). The straight lines are best fits to the data.
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FIG. 3. Demonstration of the breakdown of dynamical scal-
ing behavior for the structure factor S (k,t) for h =1. Note that
the breakdown is most prominent for small values of kR, (¢).

domains. As shown in Fig. 4, when the randomness is
“weak” (h =0.5), we find that the tail of S (k,#) goes as
the usual k 7% in two dimensions. This behavior, known
as Porod’s law [22], implies that, at late times, the
domains grow as compact, two-dimensional regions with
sharp interfaces, as shown in Fig. 5(a). On the other
hand, for ‘“stronger” randomness (A =2.0), we find in
Fig. 4 that the asymptotic S (k,z)~k ~2 for large k, sug-
gesting that the domains are no longer compact [see Fig.
5(b)].

How do we understand this crossover phenomenon?
At equilibrium, the interface of a domain of size R is
roughened by the presence of the random field. The
width of the interface w scales [23] as a power of R,
o=(R /a)*h, where a is a microscopic length scale. The
diffusivity b, which has dimensions of length, is a mono-
tonically increasing function of the quenched randomness
h. The roughening exponent [8,24] {=(5—d)/3 in d di-
mensions, and so, for d =2, w=~(R /a)b(h). Since b(h)
is an increasing function of 4, there is a crossover length
scale b*=b(h*)=~1, where o=R. Thus for h <<h*, the
clusters are “compact” and we get a Porod-law behavior
[note that for small A, the asymptotic R goes as
exp( 4 /h?), where a=4%]. For h >>h* and {=1, the in-
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FIG. 4. Violation of Porod’s law for large disorder. At late
times (¢ =10000) the tail of S (k,t)~k 3 for h =0.5, consistent
with Porod’s law, whereas S (k,t)~k ~2, resembling a Gaussian
polymer chain, for A =2.

FIG. 5. (a) A typical configuration of the system (80X 80 sec-
tion) at late time (¢ =10000) for » =0.5. Note the sharp inter-
faces. (b) Same as (a), except that here # =2.0. Note the convo-
luted interfaces.

terface is so convoluted as to “fill out” a bulk two-
dimensional “volume.” Considering a circle of radius R,
this implies that the “density” of interface within the cir-
cle is uniform. Since the pair correlation function g(r,t)
is a measure of this density for r <<R, its Fourier trans-
form S (k,t) should go as k ~2 for kR >>1. It should be
noted that this is exactly the form obtained for an ideal
(Gaussian) polymer chain [24] in arbitrary dimensions.
To summarize, we have numerically integrated the
evolution equations for a “soft-spin” version of the
RFIM in two dimensions where the order parameter is
conserved. Analysis of the equal-time correlation func-
tion g (r,t) shows a preasymptotic (Inz)? growth law fol-
lowed by an asymptotic Inz growth of the domain size.
We provide clear evidence of a breakdown of dynamical
scaling in the region kR(z)<<1. A more detailed
analysis shows a crossover from the growth of compact
domains to polymerlike domains as the degree of ran-
domness increases, as evidenced by the shape of the
structure factor for large wave vectors. This indicates
the presence of a dynamical analogue of a ‘“‘disordered
line” in the phase diagram of the two-dimensional RFIM.
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